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Evaporation of droplets into a background gas: Kinetic modelling
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Abstract

A new kinetic model for droplet evaporation into a high pressure background gas, approximated by air, is described. Two regions
above the surface of the evaporating droplet are considered. These are the kinetic region, where the analysis is based on the Boltzmann
equation, and the hydrodynamic region. It is assumed that the mass fluxes leaving the kinetic region and the corresponding diffusion
fluxes in the hydrodynamic region are matched. A modified version of the previously developed method of direct numerical solution
of the Boltzmann equation is used. It is assumed that the mass flux leaving the droplet’s surface is the maximal one (evaporation coef-
ficient is equal to 1). The model and numerical algorithm allowed us to calculate the value of the net evaporation coefficient, defined as
the ratio of the actual mass flux leaving the kinetic region and the maximal possible mass flux. The values of this coefficient for diesel fuel
(approximated by n-dodecane) were shown to be much less than 1 for droplet surface temperatures less than 650 K. For these droplets,
the kinetic effects predicted by the new model turned out to be negligible when the contribution of air in the kinetic region was ignored.
These effects, however, appear to be noticeable, and larger than those predicted by the approximate analysis, if the contribution of air in
the kinetic region is taken into account. It is recommended that the kinetic effects are taken into account when accurate analysis of diesel
fuel droplet evaporation is essential.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the pioneering papers by Hertz [1] and Knudsen
[2] the kinetic methods have been widely used in the mod-
elling of evaporation, condensation and other transfer
processes (e.g. [3–10]). These methods have been almost
exclusively applied to the cases when gases are rarefied with
Knudsen numbers (Kn) exceeding 10�2. At the same time, a
number of authors drew attention to the fact that, even in
the case where Kn ? 0, the application of hydrodynamic
methods to modelling fluid dynamics and heat and mass
transfer processes is not always justified [11–16]. In the
recent paper by Kryukov et al. [17] it was demonstrated
that even in the case of droplet evaporation into a high
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pressure gas (diesel engines) the kinetic effects may not be
negligible. It was shown that these effects can lead to
increases in the evaporation time by up to 5–10%, com-
pared with the prediction of the conventional hydrody-
namic model in the case of small droplets (radii about
5 lm) injected into a hot gas with temperatures
Tg = 750–2000 K. The hydrodynamic models for droplet
evaporation are essentially based on the assumption that
molecules can be removed from the surface of the droplets
quickly enough to maintain fuel vapour concentration near
the droplets at the saturation level [18,19]. The kinetic
models take into account the fact that the speed of removal
of these molecules can be insufficient to maintain the con-
centration of vapour at this level. Hence, the evaporation
rate predicted by hydrodynamic models is always larger
when compared with the rate predicted by kinetic models.

Although the kinetic processes take place mainly in a
very thin Knudsen layer adjacent to the droplet surface, a
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Nomenclature

a, b coefficients introduced in Eq. (21)
apress parameter introduced in Eq. (8)
~a coefficient introduced in Eq. (23)
BM Spalding mass number
BT Spalding temperature number
D binary diffusion coefficient
f molecular velocity distribution function
E relative error
h convection heat transfer coefficient
j mass flux
J collision integral
k thermal conductivity
kB Boltzmann constant
Kn Knudsen number
K0 parameter introduced in Eq. (18)
Le Lewis number
m mass
M molar mass
n number density
n0 unit vector
N dRd

=kc

NA Avogadro number
Nk;n�1

ab parameter introduced by Eq. (16)
Q heat rate
p pressure or probability density function
r radius-vector
R Rd/Rd0

Rv(a) gas constant referring to fuel vapour (air)
Rd droplet radius
Ru universal gas constant
t time
T temperature (with subscript) or Ts/Tcr (without

subscript)
T* kBTr/eva

v velocity
V volume in the five-dimensional space
Vl(g) specific volume of liquid (gas)
w vector in the five-dimensional space (vb1l, hl, /l)
x distance from the droplet surface
Y mass fraction

Greek symbols
b evaporation coefficient
be net evaporation coefficient
dRd

thickness of the kinetic region
Dp grid size in the momentum space
eva

ffiffiffiffiffiffiffiffi
evea
p

ev, ea Lennard-Jones parameters for fuel vapour and
air

h angular coordinate
jRd

coefficient introduced in Eq. (11)
kc mean free path
mk;n�1
ab parameter introduced by Eq. (16)

q density
r diameter of molecules
reff effective diameter of molecules
sevap evaporation time
/ angular coordinate
XD,va parameter introduced in Formula (12)

Subscripts

a air
a, b a = a,v; b = a,v
c frame of reference linked with the centre of

inertia
cr critical
d droplet
e evaporation
diff diffusion
g gas
l liquid
mix mixture
M molecules
N2 nitrogen
p constant pressure
r, ref reference
Rd outer boundary of the kinetic region
s surface
v fuel vapour
x, y, z Cartesian coordinates
0 initial

Superscripts

k position of a velocity cell
M total number of cells or model under consider-

ation
n consecutive time steps
RK rigorous kinetic
0 after the collision
� after the first step or normalised
+ away from the droplet
� towards the droplet
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noticeable reduction of the density of vapour is observed
between the surface of the droplet and the outer boundary
of this layer. In this case, the flux density of vapour, as pre-
dicted by the kinetic model, is controlled by the vapour
density at the outer boundary of the Knudsen layer. The
latter is less than the vapour density at the droplet surface,
which controls the vapour flux predicted by the hydrody-
namic model. This is consistent with the above mentioned
conclusion regarding the evaporation rates predicted by
kinetic and hydrodynamic models.
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Fig. 1. Kinetic and hydrodynamic regions above the surface of the
droplet. Ts is the droplet surface temperature, qs is the fuel vapour density
in the immediate vicinity of the droplet surface, TRd and qRd are the
temperature and density of fuel vapour at the outer boundary of the
Knudsen region.
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The kinetic model for diesel fuel droplet evaporation
used in [17] was essentially based on the analysis reported
earlier in [20]. This was an approximate analysis of the
Boltzmann equation, performed under a number of
assumptions and leading to an explicit expression for mass
flux of vapour leaving the droplet. Two of these assump-
tions seem to be particularly important for practical appli-
cations. These are the assumption that the evaporation
coefficient b is a priori given and the assumption that no
other gases, apart from vapour, are present in the vicinity
of the droplet surface. The evaporation coefficient is
defined as the ratio of the actual mass flux leaving the sur-
face of the droplet (before the first collision) jes and the
maximal possible flux

b ¼ jes

qvs

ffiffiffiffiffiffiffi
RvT s

2p

q ; ð1Þ

where qvs is the density of saturated fuel vapour corre-
sponding to the liquid temperature at the droplet surface,
Ts = Tls, Rv is the gas constant for fuel vapour. Since no di-
rect measurements or calculations of b for diesel fuel were
available when paper [17] was prepared, the minimal and
average values of this parameter for water (0.04 and 0.5)
were used. The second assumption can hardly be justified
in the case of diesel fuel droplet evaporation into high pres-
sure air [21,22].

Quantitative analysis of evaporation and condensation
processes in binary mixtures seems infeasible in the
approach used in [17]. In [16] the two-surface problems
of a multicomponent mixture of vapour and non-condens-
able gases in the continuum limit were studied based on
asymptotic analysis of the Boltzmann equation. An asymp-
totic analysis of the linearised Boltzmann equation for the
binary mixture was presented in [23].

The approach used in this paper is based on the applica-
tion of numerical methods, such as those developed in [24–
26]. The numerical analysis of the Boltzmann equation has
been previously undertaken by several authors and the
results have been reported in a number of papers, including
[27–29]. In all these papers, however, it was assumed that
the sizes of all molecules in binary mixtures are the same.
This is hardly justified in the case of diesel fuel evaporation
into a high pressure air, when the effective radius of fuel
(C12H26) molecules is about 2.5� larger than the effective
radius of air (N2) molecules. This was the main driving
force behind the development of a new numerical algo-
rithm, specifically designed to model the evaporation and
condensation processes in binary mixtures consisting of
molecules with different radii and masses [30,31]. In the
present study, this algorithm is applied to the same prob-
lem of evaporation of diesel fuel into a high pressure air,
as considered earlier in [17]. The results of calculations
using this algorithm are compared with the prediction of
the hydrodynamic model and the approximate model used
in [17]. The results of this comparison allow us to reach
reliable conclusions regarding the range of applicability
and accuracy of the hydrodynamic model of droplet evap-
oration, and the approximate kinetic model used in [17].

The physical model is described in Section 2. In Sections
3 and 4 the numerical algorithm is briefly described. The
results of calculations of diesel fuel droplet heating and
evaporation (using the new model and numerical algo-
rithm, the hydrodynamic model and the simplified model
used in [17]) are presented in Section 5. The main results
of the paper are summarised in Section 6.
2. Model

As in [17], we consider two regions of gas above the sur-
face of the evaporating fuel droplet; the kinetic region and
the hydrodynamic region. These are schematically shown
in Fig. 1. In contrast to [17], however, we assume that
gas consists of two components, fuel vapour and back-
ground gas, both in the kinetic region and in the hydrody-
namic region. The background gas is identified with air,
assuming that the contribution of chemical reactions of
fuel vapour and oxygen can be ignored. Fuel vapour and
air dynamics in the first region are described by the Boltz-
mann equations, while the conventional hydrodynamic
analysis is applied in the second region. That means that
we investigate a two surface problem, similar to the one
considered in [16,27]. The location of the boundary
between these regions is determined based on a separate
analysis to be discussed later, in Section 4. It is expected
to be about 10–1000 mean molecular free paths from the
droplet surface.
2.1. Kinetic region

The evolution of the molecular velocity distribution
functions of air fa � fa(r, t, v) and fuel vapour fv � fv(r, t, v)
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in the kinetic region is controlled by the corresponding
Boltzmann equations [32]

ofa

ot
þ va

ofa

or
¼ J aa þ J av;

ofv

ot
þ vv

ofv

or
¼ J va þ J vv;

9>=
>; ð2Þ

where Jab (a = a,v; b = a,v) are collision integrals defined
as

J ab ¼
r2

ab

2

Z þ1

�1
dv1

Z p

0

sinhdh
Z 2p

0

d/ðf 0af 0b1� fafb1Þjva� vb1j;

ð3Þ

rab = (ra + rb)/2, ra and rb are the corresponding dia-
meters of molecules, h and / are angular coordinates of
molecules b relative to molecules a after the collision,
superscript ´ indicates the velocities and the molecular
velocity distribution functions after collisions (in what fol-
lows these functions will be referred to as ‘molecular distri-
bution functions’). Subscript 1 indicates that molecules of
type b collide with molecules of type a and as a result of
this interaction the function fa is modified. The first integral
in the right-hand side of (3) is calculated in the three dimen-
sional velocity space. When deriving (2) and (3) it was as-
sumed that molecules are rigid elastic spheres and body
forces acting on them are negligible.

Note that the approximation of the collisions involving
n-dodecane molecules as elastic can be crude. The rigorous
analysis of inelastic collisions, when calculating collision
integrals, would have required the application of kinetic
methods taking into account transfer of energy between
rotational, vibrational and translational degrees of free-
dom of individual molecules [33]. Difficulties of this
approach, even at the level of formulation of reliable equa-
tions, are well known [34,35]. Since the new level of com-
plexity of the two-surface evaporation–condensation
problem in the presence of a non-condensable component
has been introduced in our paper, these effects of non-elas-
tic collisions were not included in our analysis. Possible
approximation of molecules to rigid spheres in this case
is merely our conjecture, which we believe to be acceptable
at the first stage of investigating this problem.

In order to calculate the integral in (3), one needs to
know the molecular distribution functions f 0a and f 0b1 after
collisions. To do this, it is necessary to establish the rela-
tionship between va, vb1 on one side and v0a, v0b1 on the other
side. Remembering our assumption that collisions are elas-
tic, the laws of conservation of momentum and energy lead
to the following system of equations for v0a and v0b1 [36]:

v0a ¼
mb

ma þ mb
jv0a � v0b1jn0 þ

mava þ mbvb1

ma þ mb
;

v0b1 ¼ �
ma

ma þ mb
jv0a � v0b1jn0 þ

mava þ mbvb1

ma þ mb
;

9>>=
>>; ð4Þ

where ma and mb are the masses of molecules, n0 is the unit
vector in the direction of molecular velocity after the colli-
sion in the frame of reference linked with the centre of iner-
tia of colliding molecules.

The initial molecular distribution functions of both
vapour and air molecules are assumed to be Maxwellian

fa;v ¼ na;v

1

2pRa;vT s

� �3=2

exp �
v2

x þ v2
y þ v2

z

2Ra;vT s

 !
; ð5Þ

where na,v are number densities of air and fuel vapour mol-
ecules, Ra,v are gas constants of air and fuel vapour, Ts is
assumed to be the same for air and fuel vapour,

na;v ¼
qa;v

Ma;v

NA ¼
pa;v

RuT s

NA; ð6Þ

qa,v are the densities of air and vapour, Ma,v are molar
masses of air and vapour (kg/kmol), Ru is the universal
gas constant, NA is the Avogadro constant, pv and pa are
the partial pressures of fuel vapour and air (pa =
ptotal � pv).

The Boltzmann equation is solved in the kinetic region
assuming that the droplet surface and the surface of the
outer boundary of this region are flat. The effects of the
curvature of the surface of the droplet are taken into
account when calculating the fluxes at its outer boundary.
It is assumed that at the surface of the droplet the molecu-
lar distribution functions of fuel vapour and air are main-
tained Maxwellian for vx P 0 with

nvs ¼ b
pvs

RuT s

N A; ð7Þ

where b is the evaporation coefficient defined by Eq. (1).
The droplet surface is not transparent for air molecules.

Also, the molecular distribution functions of fuel vapour
and air at the outer boundary of the kinetic region are
assumed to be Maxwellian for vx 6 0 with

nvRd ¼
pvRd

RuT s

NA and naRd ¼
paRd

RuT s

NA;

where pvRd and paRd are the partial pressures of fuel vapour
and air at the outer boundary of the kinetic region. The
additional subscripts s and Rd indicate the droplet surface
and the outer boundary of the kinetic region. It is assumed
that the fluxes of air to and away from the surface of the
droplet are equal. Note that although the kinetic model
predicts a small drop in the partial pressure of vapour be-
tween the surface of the droplet and the outer boundary of
the kinetic region, the effect of this drop on the partial pres-
sure of air was shown to be small (less than 1%) and is
ignored in our analysis.

The vapour and air temperatures at the outer boundary
of the kinetic region are assumed equal to that at the sur-
face of the droplet: TRd = Ts. This assumption can be jus-
tified by small thickness of the kinetic region. One of the
first attempts to relax this assumption and solve the prob-
lems of simultaneous heat and mass transfer in binary mix-
tures was reported in [37]. A more detailed analysis of this
issue is not straightforward. It is beyond the scope of this
paper.



S.S. Sazhin et al. / International Journal of Heat and Mass Transfer 50 (2007) 2675–2691 2679
Assuming that fuel vapour leaving the droplet surface is
saturated n-dodecane vapour, and using data presented in
[38], the following approximation can be obtained:

pvs ¼ pref exp
T s � T ref

apres

� �
; ð8Þ

where

pref ¼ 70:44 Pa; T ref ¼ 300:18 K; apres ¼ 22:37 K

when T s 6 440:00 K;

pref ¼ 46204:48 Pa; T ref ¼ 449:87 K; apres ¼ 56:97 K

when T s > 440:00 K:

9>>>=
>>>;

Note that the mass fraction of fuel vapour can be estimated
as

Y vs ¼ 1þ p
pvs

� 1

� �
Ma

Mv

� ��1

; ð9Þ

where p is the total pressure of the mixture of fuel vapour
and air.

Exactly the same boundary condition for pv is used in
hydrodynamic models of droplet evaporation, where the
evaporation problem is reduced to the problem of diffusion
and convection of vapour outside droplets. In the case of
our model, however, the diffusion and convection of
vapour takes place not from the surface of the droplet
but from the outer boundary of the kinetic region.

Note that the values of Yvs, nvs, qvs and pvs refer only to
fuel vapour molecules leaving the surface of the droplet. In
the general case, these values are different from the actual
mass fraction, number density, mass density and partial
pressure, which take into account the contribution of both
outgoing and incoming molecular fluxes. The latter are
obtained from the solution of the Boltzmann equation in
the kinetic region. The partial pressure of air in the kinetic
region is calculated as the difference between the total pres-
sure and the actual partial pressure of the fuel vapour.

As mentioned in Section 1, the theoretical or experimen-
tal estimation of the evaporation coefficient used in (7) is
not trivial. In most cases it can be assumed that the system
is in the state of equilibrium when the evaporation coeffi-
cient coincides with the condensation coefficient. The rigor-
ous theoretical estimation of both coefficients would
require the application of molecular dynamics methods
[10,39,40]. Perhaps one of the most advanced molecular
dynamics investigations of these coefficients for water was
reported in [40]. In this paper, two models for intermolec-
ular potential were used: the Carravetta–Clementi model
[41] and the extended simple point charge model [42]. In
both models, the intermolecular interactions are treated
as a combination of the short-range pairwise potential of
atoms and the long-range Coulombic interaction. The pre-
dictions of the extended simple point charge model were
shown to be in better agreement with experimental data.
It was pointed out that the translational motion is of pri-
mary importance for the evaporation/condensation pro-
cess, whereas the effects of the rotational motion are
insignificant. The molecular dynamic simulation data were
shown to be in good agreement with the prediction of the
evaporation/condensation coefficient by the transition state
theory earlier developed in [43]. In the latter paper, conden-
sation/evaporation processes at the liquid–vapour interface
were considered as a kind of chemical reaction and the gen-
eral theory of rate processes [44] was applied. As a result
the following simple expression for the evaporation/con-
densation coefficient was derived:

b ¼ 1� V l

V g

� �1=3
" #

exp � 1

2

1

V l

V g

� �1=3

� 1

2
64

3
75; ð10Þ

where V l and V g are specific volumes of liquid and gas
respectively.

Remembering that Vl� Vg for n-dodecane, except
when the temperatures are close to the critical temperature,
we will assume in our further analysis that b = 1, unless we
compare our results with those reported earlier. We appre-
ciate that this assumption needs to be justified more rigor-
ously, based on molecular dynamics simulations. This,
however, is beyond the scope of this paper.
2.2. Hydrodynamic region

It is assumed that the mass fluxes leaving the kinetic
region and the corresponding diffusion fluxes in the hydro-
dynamic region are matched

jRd

Z þ1

�1
dvy

Z þ1

�1
dvz

Z þ1

0

dvxvxfvðr; t; vÞ

¼ NA

Mv

qmixDva

Rd þ dRd

lnð1þ BMÞ; ð11Þ

where qmix is the density of the mixture of air and vapour at
the inner boundary of the hydrodynamic region (qmix =
qvRd/YvRd), Dva is the binary diffusion coefficient (diffusion
of vapour through air), BM = YvRd/(1 � YvRd) is the Spal-
ding mass number, YvRd is the fuel vapour mass fraction at
the inner boundary of the hydrodynamic region, jRd

¼
ð1þ ðdRd

=RdÞÞ�2 is the correction factor for the difference
between the area of the outer surface of the kinetic region
and the area of the droplet surface, dRd

is the thickness of
the kinetic region. BM takes into account the effect of the
finite mass fraction of fuel vapour on the evaporation pro-
cess (see Section 3.2.1 of [19] for detail).

In [17] the analysis was based on the assumption that the
Lewis number (Le) (see [19]) is equal to 1. In our model, no
assumptions about the value of Le are made and the binary
diffusion coefficient is calculated from the following expres-
sion [45]:

Dva ¼ 1:8583� 10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 3

r

1

Mv

þ 1

Ma

� �s
1

pr2
vaXD;va

; ð12Þ
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where Dva is in m2/s, p is in atm (1 atm � 1.01 � 105 Pa),
rva = 0.5(rv + ra) is the average diameter of molecules of
vapour and air (in m � 10�10), XD,va is the function of
T � � kBT r=eva; eva ¼

ffiffiffiffiffiffiffiffi
evea
p

; ev and ea are Lennard-Jones
parameters for fuel vapour and air [45], kB is the Boltz-
mann constant, T r ¼ T s þ 1

3
ðT g � T sÞ is the reference tem-

perature, Ts is the droplet surface temperature, Tg is the
ambient gas temperature.

In accordance with [45] the following approximation for
XD,va could be used:

XD;va ¼
1:06036

T �0:15610
þ 0:19300

expð0:47635T �Þ þ
1:03587

expð1:52996T �Þ

þ 1:76474

expð3:89411T �Þ :

If, in agreement with the assumptions used in the kinetic
model, we assume that the molecules can be approximated
as rigid spheres, this formula for XD,va reduces to XD,va = 1
[45]. This approximation for XD,va is used in our analysis.

Assuming that fuel vapour can be approximated by
n-dodecane (C12H26) and air can be approximated by N2,
we took rv = 9.37 � 10�10 m and ra ¼ rN2

¼ 3:67�
10�10 m [46].

As in the hydrodynamic model, heat supplied to the
droplet in our model is estimated as [47]

Q ¼ 4pR2
dhðT g � T sÞ; ð13Þ

where the convection heat transfer coefficient h is obtained
from the equation [47]

h ¼ kmix

Rd

lnð1þ BMÞ
BM

; ð14Þ

kmix is the thermal conductivity of the mixture of vapour
and air. In many practical applications the contribution
of vapour can be ignored and the thermal conductivity of
air can be approximated as [46]

ka ¼ 0:05128þ T ½�0:09885� 10�3 þ T ð0:21157� 10�6

� 0:094686� 10�9T Þ	:

At temperatures above about 400 K, the dependence of ka

on pressure is relatively weak. An increase of pressure from
0.1 MPa to 10 MPa would lead to an increase in ka of less
than 10% [48]. To achieve consistency with the previous pa-
per [17] we assumed that kmix is equal to the average value
ka = 0.035 W/(m K). This is the value of ka at atmospheric
pressure and temperature close to 450 K.

The ideal gas approximation is assumed to be valid. Fol-
lowing [32,49], this approximation is valid when
nMr3

eff ! 0, where nM is the number of molecules per unit
volume, reff is the effective diameter of molecules. For air
(approximated by nitrogen) at Tg = 600 K and ambient
pressure 3 MPa, nMr3

eff ¼ 0:018. For saturated n-dodecane
at the same temperature, nMr3

eff ¼ 0:1. In both cases
nMr3

eff � 1, which justifies our assumption.
Note that in the kinetic model BM is defined by YvRd,

while in the hydrodynamic model it is defined by Yvs.
Strictly speaking BM in Eq. (14) should have been replaced
by the Spalding temperature number BT [50,19]. This
would have changed slightly the predicted rate of heating
and evaporation of droplets at the expense of making the
numerical algorithm more complicated. However, this
improvement of the model would hardly affect the differ-
ence in the heating and evaporation of droplets predicted
by kinetic and hydrodynamic evaporation models. The
inclusion of BM in this expression makes the predictions
of our model compatible with those reported in [17], whose
analysis was based on Eq. (14).

The effects of temperature gradients inside droplets and
thermal radiation are ignored. The range of applicability
of this assumption has been discussed in [51–57]. Since n-
dodecane droplets are semi-transparent we can expect that
their radiative heating would take place mainly under their
surfaces rather than at their surfaces (see e.g. [58–60]), which
implies that the thermal radiation would contribute to
changes in droplet surface temperature indirectly. Note that
these droplets can be opaque for some parts of the radiation
spectrum, which would allow us to consider the radiative
heating as a surface phenomenon, similar to convection
[61]. The analysis of the contribution of these effects to the
evaporation process is beyond the scope of this paper.

3. Numerical algorithm

The main features of the numerical algorithm used in
our calculations are described in [24,31,62]. In this section
these features are briefly summarised and the new elements
of the algorithm are discussed.

Time and physical space are discretised as in conven-
tional structured computational fluid dynamics (CFD)
codes [63]. The discretisation in the velocity space is per-
formed similarly to that in the physical space, replacing
continuous values of v by a discrete set {vk}M, where k indi-
cates the position of a velocity cell, M is the total number
of cells. A homogeneous grid was used with the following
range vimax � vimin ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffi
2RvT s

p
, where i = x, y, z, Rv is the

gas constant for fuel vapour, Ts is the droplet surface tem-
perature. Twelve cells for each velocity component were
considered, giving the total number of cells in the velocity
space equal to 123 = 1728. This grid was tested for calcula-
tion of the dimensionless Maxwellian distribution with
normalised density �n ¼ 1 and normalised temperature
T ¼ T g=T s ¼ 1. The results of the calculation gave us:
�n ¼ 0:9999 and T ¼ 0:9998 [31]. Hence we can conclude
that the velocity grid under consideration allows us to cal-
culate the macroscopic variables with errors much less than
1% when the distribution function of molecules is close to
the Maxwellian one. In the general case, we anticipate that
this error is, at worst, just less than 1%, which we find
acceptable for our applications.

The boundaries of the velocity domain in vx, vy, vz direc-
tions are chosen in such a way that the contribution of mol-
ecules with velocities outside this range can be ignored. For
each value of vk the corresponding value of f k is specified.
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This allows us to present each of Eq. (2) in a discretised
form

Df k
a

Dt
þ vk

a

Df k
a

Dr
¼ J k

aa þ J k
ab; ð15Þ

where k 2 [1,M]. After calculation of J k
ab for each velocity

cell vk
a, the nonlinear system of integral-differential equa-

tions (2) reduces to the linear system of algebraic equations
(15).

Following [24], the numerical solution of System (15) for
each gas component is performed in two steps. Firstly,
molecular displacements are calculated ignoring the effect
of collisions ðJ k

aa ¼ J k
ab ¼ 0Þ. Secondly, the collisional

relaxation is calculated under the assumption of spatial
homogeneity. The boundary conditions for the molecular
distribution function are taken into account in the first
step. The numerical solution of Eq. (15) is performed fol-
lowing the explicit approach, and using the Courant condi-
tion Dt max(jvxj, jvyj, jvzj) < min(Dx,Dy,Dz). Between 100
and 200 cells in the physical space are used, leading to
errors of less than 1%.

In the second step, the displacement of molecules stops
and they start colliding. Using the explicit approach, the
solution of each simplified equation in System (15) in each
cell in the physical space can be written as

f k;n
a ¼

~f k;n�1
a þ Dt½N k;n�1

aa þ Nk;n�1
ab 	

1þ Dt½mk;n�1
aa þ mk;n�1

ab 	
; ð16Þ

where

mk;n�1
ab ¼ r2

ab

2

Rþ1
�1 dv1

R p
0 sinhdh

R 2p
0 d/~f k;n�1

b1 jvk
a� vk

b1j;

N k;n�1
ab ¼ r2

ab

2

Rþ1
�1 dv1

R p
0

sinhdh
R 2p

0
d/~f 0k;n�1

a
~f 0k;n�1

b1 jvk
a� vk

b1j;

9=
;
ð17Þ

~ indicates the value of the molecular distribution function
calculated in the first step, additional superscripts n � 1
and n indicate consecutive time steps.

The calculation of integrals mk;n�1
ab and Nk;n�1

ab in Eq. (16)
(see Eq. (17)) turned out to be a major challenge from the
point of view of CPU requirements. In our algorithm the
conventional approach to calculation of these integrals is
replaced by integration based on the random cubature
formulae. In this case mk;n�1

ab and Nk;n�1
ab are found from

the following expressions:

mk;n�1
ab ¼ V

K0

r2
ab

2

PK0

l¼1

~f k;n�1
b1l

jva�vb1lj sin hl

pðwlÞ ;

Nk;n�1
ab ¼ V

K0

r2
ab

2

PK0

l¼1

~f 0k;n�1
al

~f 0k;n�1
b1l

jva�vb1lj sin hl

pðwlÞ ;

9>>>=
>>>;

ð18Þ

where V is the volume of the five-dimensional space,
wl � wl(vb1l, hl, /l) is an arbitrary chosen point in this
space, p(wl) is the value of the probability density function
of the distribution of these points, K0 is the total number of
these points (assumed number of collisions in a given cell in
physical and velocity spaces), and the summation is per-
formed over all these points. In this case the relative error
of calculation of mk;n�1

ab and Nk;n�1
ab is proportional to 1=

ffiffiffiffiffiffi
K0

p

and does not depend on the dimension of space [24,64]. For
practical calculations we assumed homogeneous distribu-
tion of wl, which implies that p(wl) = 1. The practical effi-
ciency of the application of Eq. (18) largely depends on
the choice of random nodes wl. One of the most widely
used approaches to choosing these nodes is based on the
so called Korobov sequences [65–67,62]. The condition
p(wl) = 1 for these sequences is satisfied. In the case of
piecewise constant functions (used in our numerical analy-
sis) the errors of calculations using Korobov sequences are
proportional to 1/K0. This approach is used in our algo-
rithm. K0 = 200 was used in the calculations, leading to
possible errors of about 1%. The explicit expression for V

is presented as

V ¼ 2p2jvxðmaxÞ � vxðminÞjjvyðmaxÞ � vyðminÞjjvzðmaxÞ � vzðminÞj:
ð19Þ

The modelling of the collision processes is based on the
assumption that the collisions are elastic (momentum and
energy are conserved) and the directions of momenta of
molecules in the coordinate system, linked with their cen-
tres of inertia, are random. The numerical implementation
of this model, however, is linked with a number of difficul-
ties. These are related to the fact that randomly chosen
directions of molecular velocities after collisions are likely
to lead to the values of these velocities lying between the
values in the nodes of the discretised velocity space. This
can eventually lead to non-conservation of momentum
and energy during the collision process. In the early papers,
this problem was resolved by introducing corrections to
the molecular distribution function after collision [24].
Although these corrections made the system conservative,
they led to additional sources of error. In the projection
method, developed later in [26], the actual molecular veloc-
ities after the collisions were replaced by pairs of velocities
referring to the nearest nodes. These velocities were appro-
priately weighted, which ensured that the conservation of
momentum and energy took place during individual colli-
sions. This, however, led to increased complexity of the
algorithm.

The approach used in our algorithm is different from the
ones described above. It is based on the discretisation of
the velocities, not only during the description of molecular
motion, but also in the analysis of the collision processes.
Two colliding molecules, with velocities v and v1, enter a
certain zone of interaction. We do not know the details
of the collision process, but we assume that after the colli-
sion these molecules acquire new velocities v0 and v01 for
which: (1) the total momentum and energy of both mole-
cules are conserved during the collision process (collisions
are elastic); (2) vectors v0 and v01 belong to an a priori cho-
sen set of velocities.

A conservative scheme, based of a special choice of col-
lision parameters, was earlier discussed in [68–70]. In this
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scheme the velocity vectors of molecules before and after
collisions were taken in the nodes of the originally discre-
tised velocity space. Our approach has some similarities
with the approaches used in [68–70]. Its practical applica-
tion can best be illustrated if we consider the collision pro-
cess in the frame of reference linked with the centre of
inertia of both molecules, and describe the system dynam-
ics in terms of momenta rather than velocities. In this
frame of reference the momenta of oncoming molecules
have equal values but opposite directions. For the two
dimensional case these are schematically shown in Fig. 2,
where pcx = �1.5Dp and pcy = 1.5Dp, the subscript c indi-
cates that the momentum component is taken in the frame
of reference linked with the centre of inertia of both mole-
cules, Dp is the grid size in the momentum space (assumed
to be the same in all directions). It can be shown that, in the
general case, the components of momenta in the frame of
reference linked with the centre of inertia of colliding mol-
ecules are always integers of 0.5Dp. The collision process
leads to the rotation of momenta of both molecules in such
a way that their absolute values remain the same, but the
directions are opposite. All possible momenta satisfying
these conditions lie on the circumferences shown in
Fig. 2. In contrast to most previous studies of this process,
we do not consider all possible values of momenta after the
collision, but restrict ourselves to the cases when the com-
ponents of these momenta are integers of 0.5Dp. In the
two-dimensional case shown in Fig. 2, these correspond
to the points of intersection of the circumference with the
nodes in the momentum space. In this case there are 4 such
points corresponding to 4 combinations of momenta of
p

1p

p'

1p'

xp

yp

Fig. 2. Scheme of the collision process between two molecules in the frame
of reference linked with their centre of inertia. p and p1 are momenta of
molecules before the collision; p0 and p01 are their momenta after the
collision. The sizes of the grid in this plane are assumed to be the same in
px and py directions and equal to Dp. Both components of all four vectors
p, p1, p0 and p01 are integers of 0.5Dp. The absolute values of these vectors
are equal to the radii of the corresponding circumferences. The subscriptsc,
indicating that the momenta are taken in the frame of references linked
with the centre of inertia of colliding molecules, are omitted.
molecules after collision. In the three-dimensional case
the circumference shown in Fig. 2 turns into the surface
of a sphere and the number of possible combinations of
momenta after collision increases to 12. We have observed
that the maximal number of these combinations in the
three-dimensional space is 24 (although we cannot prove
this rigorously). In the practical implementation of this
model, the calculations were performed for all possible val-
ues of h and / for each collision and then the results were
averaged over these variables. This is expected to improve
the accuracy of the results compared with the random
selection of h and / from the set of possible values of these
variables.

We believe that this approach provides consistency in
discretisation processes used for the description of molecu-
lar dynamics and collision processes. It was tested on
numerous problems, one of which is discussed in Section 5.
4. The matching conditions

The analysis presented so far has been based on the
assumption that we know the location of the boundary
between the kinetic and hydrodynamic regions. The identi-
fication of this boundary, however, proved difficult in the
general case.

To illustrate the problem, we considered an example of
evaporation on a n-dodecane (C12H26) droplet with
Ts = 600 K, qvs(Ts) determined by Eq. (8) and ideal gas
law, Ts = TRd and assumed qvRd = 0.8qvs. In the following
analysis the subscript v for fuel vapour will be omitted. We
took the thickness of the kinetic region dRd

to be equal to
20kc, where kc is the mean free path of molecules, estimated
as

kc ¼
1ffiffiffi

2
p

prN2
nN2s

;

where rN2
and nN2s are the diameter of nitrogen molecules

and their number density at the droplet surface, estimated
at Ts = Ts0 = 600 K and pressure 3 MPa. This parameter
was introduced for normalising the thickness of the Knud-
sen region. It is not used in our calculations.

Two cases have been considered. Firstly, we assumed
that there was no air in this region. Secondly, we assumed
that the total pressure of the mixture of vapour and air in
this region was equal to 3 MPa. The plots of q/qs versus x/
kc (where x is the distance from the droplet surface) for
both cases are shown in Fig. 3.

As can be seen from this figure, in the case when there is
no air in the kinetic region the value of q/qs remains prac-
tically the same at x > 5kc. This means that we would be
able to obtain about the same result if the thickness of
the kinetic region is decreased by a factor of 4. In this case,
the choice of the value of dRd

turns out to be a relatively
simple task. Note that the vapour density jump is observed
both at the droplet surface and at the outer boundary of
the kinetic region. This is a typical result following from
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the kinetic modelling of the phenomenon (cf. [71]). The sit-
uation is rather different in the case when the presence of
air is taken into account. As can be seen from Fig. 3, no
saturation effect, demonstrated for the case without air,
can be observed. Also, the plots of q/qs versus x/kc for
dRd
¼ 10kc and dRd

¼ 50kc and the same partial air pressure
have been calculated. They are noticeably different from
those shown in Fig. 3 for dRd

¼ 20kc. From the point of
view of practical applications, this leads to the problem
of correct choice of dRd

.
A possible approach to this problem would be to take

the largest possible value of dRd
. This may, however, be

impractical due to excessive CPU requirements. A tenfold
increase in this thickness would increase CPU time by a
factor of 100.

We suggest an alternative approach, which we found
useful for practical applications, based on the observation
that the actual flux of vapour leaving the droplet can be
found from the relationship

js ¼ jþs � j�s ; ð20Þ

where jþs is the flux in the x-direction at the surface of the
droplet (x = 0), which is determined by Ts, qs(Ts), and the
value of the evaporation coefficient b; j�s is the correspond-
ing flux in the �x direction. The latter is formed due to the
fact that molecules of vapour emitted from the surface of
the droplet collide with one another and with other mole-
cules, and some of them return to the droplet. j�s is deter-
mined from the solution of the Boltzmann equations. In
our analysis it will be assumed that b = 1.

When the kinetic region is thin enough, then the number
of collisions in it is expected to be small and j�s is close to
zero. The increase in dRd

leads to the increase in j�s and the
corresponding decrease of js. However, at large distances
from the droplet surface the effect of collisions on the
returning flux diminishes and j�s reaches its saturation level.
In this case the constant flux of vapour js = jRd is
established.

The plots of j+ and j� for n-dodecane vapour versus
x/kc, for the same values of parameters as in Fig. 3 (curve
(2)) and the total pressure of the mixture of vapour and air
p = 3 MPa, are shown in Fig. 4a. The value of dRd

is
assumed equal to 50kc. As follows from this figure, both
j+ and j� decrease with increasing x/kc, but the difference
between them, j = js = jRd (net flux), remains the same, as
expected. The same plots as in Fig. 4a but for air are shown
in Fig. 4b. The latter figure shows that both j+ and j� for
air increase with increasing x/kc but the difference between
them remains close to zero. This reflects the fact that there
is no net flux of air towards droplets in steady state condi-
tions. Small differences between j+ and j� for air reflect
errors in computation.

Let q1 and q2 be vapour densities near the droplet sur-
face and the outer boundary of the kinetic region:
q1 < qs, q2 > qRd and q1 > q2 (see Fig. 3). The latter
inequality results from molecular collisions. In the absence
of such collisions (free molecular flow) q1 = q2. In this case
qs � q1 and q2 � qRd would reach their maximum values.
In the case of large numbers of collisions, gas behaves in
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a similar way to a continuous medium where q1 is very
close to qs, q2 is very close to qRd and the gradient of q
inside the kinetic region reaches its maximal value.

Let Dq � q1 � q2. We would expect that this new
parameter depends on the number of collisions experienced
by a molecule of vapour inside the kinetic region,
N ¼ dRd

=kc, and varies between 0 and Dqmax = qs � qRd

when N increases from 0 to 1 (cf. [16]). This property of
Dq has been used in the development of the new algorithm
for determination of the vapour mass flux at the outer
boundary of the kinetic region. This algorithm is based
on the properties of vapour density and flux illustrated in
Fig. 5a, b and Fig. 6a, b.

The plots of q/qs versus x/kc for various dRd are shown
in Fig. 5a. The plots for dRd = 10kc and dRd = 20kc have
been calculated, but are not shown in this figure. It has
been assumed that ptotal = 3 MPa, Ts = 600 K and
qRd = 0.8qs. As follows from this figure, the curves tend
to form a plateau for large x/kc only when dRd = 250kc.
A plateau is even more clearly seen in Fig. 5b, where the
plot of j versus dRd/kc is shown for the same values of
parameters as in Fig. 5a. As follows from Fig. 5b, j remains
practically constant at dRd/kc > 200.

Combining Fig. 5a and b, we have been able to find the
values of j as functions of Dq/qs for various dRd. These
values are shown in Fig. 6a for dRd = 10kc (point 1),
dRd = 20kc (point 2), dRd = 50kc (point 3), dRd = 150kc
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Fig. 5. The plots of q/qs for n-dodecane vapour versus x/kc for various
dRd (indicated near the plots) (a) and the plot of j versus dRd/kc (b). It is
assumed that ptotal = 3 MPa, Ts = 600 K and qRd = 0.8qs.

2), dRd = 50kc (point 3), dRd = 150 kc (point 4) and dRd = 250kc (point 5).
These points are connected by a straight line. The values of ptotal, Ts and
qRd are the same as in Fig. 5a. Plots of j versus Dq/qs for the same ptotal

and Ts as in Fig. 5, but for various qRd (numbers near the lines) (b). The
values of j and Dq used for the latter plots were calculated for dRd

¼ 10kc,
dRd
¼ 20kc and dRd

¼ 50kc. The intersection between the line correspond-
ing to a chosen value of qRd and the vertical line Dq/qs = Dqmax/qs =
(qs � qRd)/qs gives the required value of the net flux jRd(qRd). The arrow
shows the value of this flux for qRd = 0.5qs.
(point 4), dRd = 250 kc (point 5). As can be seen in this
figure, points 1–5 lie almost on a straight line and j can
be presented as a linear function of Dq

j ¼ �aDqþ b; ð21Þ

where a, b are constants depending on Ts and the partial
pressure of air. The negative value of the coefficient before
Dq reflects the fact that j decreases when Dq increases.

The predictions of Eq. (21) have been checked against
the results of numerical solutions to the Boltzmann equa-
tion for evaporating n-dodecane droplets into air, assuming
that the total pressures are in the range 0.2–5 MPa,
Ts = 600 K, qRd = 0.8qs and qs(Ts) = 22.09 kg/m3. The
results were shown to be consistent with predictions of
Eq. (21). In the plots shown in Fig. 6b we restricted our
analysis to p = 3 MPa, but considered a set of values of
qRd in the range 0.5qs–0.9qs. As can be seen from this fig-
ure, j is clearly a linear function of Dq for the whole range
of qRd, in agreement with Eq. (21).

Similar results were obtained for other values of Ts in
the range 400–659 K (critical temperature of n-dodecane).
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The plot of a versus Ts for this range of temperatures is
shown in Fig. 7. As can be seen from this figure, a and
its derivative increase with increasing Ts.

The plots shown in Fig. 6b are extrapolated towards
higher Dq and their intersections with the vertical lines cor-
responding to Dq = Dqmax are found. This is expected to
give the true value of jRd for the chosen value of qRd, since
Dq ? Dqmax when dRd

!1. An explicit expression for
j = jRd can be obtained from Eq. (21) by replacing Dq with
Dqmax

jRd ¼ �aðqs � qRdÞ þ b; ð22Þ

where b is a function of qRd. From our computations (see
Fig. 5) it follows that b is proportional to qs � qRd, i.e.
b = c(qs � qRd), where c is the new constant. This allows
us to rewrite Eq. (22) as

jRd ¼ �~aðqs � qRdÞ; ð23Þ

where ~a ¼ a� c.
Using the set of lines shown in Fig. 6b or Eq. (23) we

obtained the plots of j(qRd/qs) = js(qRd/qs) = jRd(qRd/qs)
for Rd0 = 20 lm and Rd0 = 5 lm. These are shown in
Fig. 8 (see plots (1) and (2)). In the same figure, the plots
of jdiff versus qRd/qs, as obtained from the mass diffusion
and convection equation in the hydrodynamic region (see
the right-hand side of Eq. (11)), are presented (see plots (3)
and (4)). The intersection points between the two curves
jRd and jdiff, corresponding to the same values of Rd0, give
the values of jRd = jdiff and the corresponding values of
qRd. In the case shown in this figure, for Rd0 = 20 lm:
jRd = jdiff = 0.217 kg/(m2 s) and qRd = 0.972qs, while for
Rd0 = 5 lm: jRd = jdiff = 0.657 kg/(m2 s) and qRd = 0.867qs.
The increase in jdiff when Rd0 decreases is the expected result
(see the right-hand side of Eq. (11)). Note that the finite
value of dRd

(about 1 lm) is responsible for the deviation
of the ratio jdiff(Rd0 = 5 lm)/jdiff(Rd0 = 20 lm) from 4. The
relatively weak dependence of jdiff on qRd reflects compara-
tively small kinetic corrections to jdiff despite considerable
deviations of qRd from qs. The difference between
jRd(Rd0 = 5 lm) and jRd(Rd0 = 20 lm) is due to the contri-
bution of the term jRd

in the left-hand side of Eq. (11). This
term takes into account the difference in the areas of the
droplet surface and the outer boundary of the kinetic region.
5. Results

To validate the numerical algorithm described in the
previous section, a number of functionality tests and com-
parisons with the results reported by other authors were
performed [31]. For example, Fig. 22 from [27] for number
density was reproduced. In this section the model and
numerical algorithm, described in the previous sections,
are applied to simulate the process of heating and evapora-
tion of a diesel fuel droplet, with initial temperature 300 K,
inserted into hot air at a pressure of 3 MPa. As already
mentioned, the contribution of chemical reactions between
fuel vapour and oxygen is ignored. Firstly we consider a
simplified problem, where the contribution of air in the
kinetic region is ignored (Section 5.1). Then a more general
problem, where the contribution of air is taken into
account, is considered (Section 5.2).
5.1. One-component gas in the kinetic region

Let us consider the evaporation of diesel fuel droplets of
various radii into a hot gas at various temperatures, using
essentially the same assumptions as in [17] (only fuel
vapour is present in the kinetic region). Since the value of
the evaporation coefficient for diesel fuel is not known,
we assumed that it was equal to 1 when the model and
numerical algorithm described above were used (in contrast
to [17], where it was assumed equal to the minimal and
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average values of b reported for water). To characterise the
evaporation process we found it convenient to introduce
the new coefficient, which we called the net evaporation
coefficient and defined as

be ¼
jRd

jþs
: ð24Þ

The plot of be versus Ts is shown in Fig. 9 by the dashed
curve. As can be seen from this figure, be increases from
about 0.0001 at Ts � 450 K to about 0.00025 at
Ts � 650 K. This indicates that only a very small fraction
of molecules leaving the droplet surface reaches the outer
boundary of the kinetic region.

To compare the predictions of the new model and
numerical algorithm and the predictions of the approxi-
mate model reported in [17] we consider the problem of
evaporation of a relatively large droplet of Rd0 = 20 lm
into air at temperature Tg = 650 K (assumed to be constant
during the whole process). The time evolution of norma-
lised droplet radius and temperature, R = Rd/Rd0 and
T = Ts/Tcr (Tcr = 659 K is the critical temperature of n-
dodecane), is shown in Fig. 10. The calculations were
performed, using the model and numerical algorithm
described above (solid curves 1), the hydrodynamic model
(dashed–dotted curves 2), the simplified kinetic models
with b = 1 (dashed curves 3) and with b = 0.04 (dotted
curves 4). As follows from this figure, the curves, predicted
by the kinetic model based on the direct numerical solution
of the Boltzmann equation (rigorous kinetic model), the
simplified kinetic model based on b = 1 and b = 0.04,
and the hydrodynamic model, almost coincide. The reduc-
tion in the evaporation time predicted by the hydrody-
namic model and the simplified kinetic model with b = 1
and b = 0.04, when compared with the rigorous kinetic
model, is less than 1% and can be ignored in most practical
applications.

Similar results were obtained for Rd0 = 5 lm and other
values of gas temperature (Tg = 750 K and Tg = 1000 K)
)K(sT

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

400 450 500 550 600 650

(1)
(2)

eβ

Fig. 9. Plots of the net evaporation coefficient be, as predicted by Eq. (24),
versus Ts, assuming that the total pressure is equal to 3 MPa. The solid
curve (1) refers to the case when the contribution of air in the kinetic
region is taken into account. The dashed curve (2) refers to the case when
the contribution of air in this region is ignored.
for both initial droplet radii. These results seem to cast
doubt over the conclusion drawn in [17], that kinetic effects
lead to noticeable increase in droplet evaporation time in
the case of diesel fuel droplet evaporation into a high pres-
sure gas. The application of the conventional hydrody-
namic model, almost universally used in computational
fluid dynamics (CFD) codes, seems to be vindicated. This
conclusion, however, was based on the assumption that
only fuel vapour is present in the kinetic region. A more
general problem, when the contribution of air in the kinetic
region is taken into account, is considered in the next
subsection.
5.2. Two-component gas in the kinetic region

Let us now consider the same problem as in Section 5.1,
but take into account the presence of air in the kinetic
region. The partial pressure of air is found as

pa ¼ ptotal � pv; ð25Þ

where pv is the actual partial pressure of fuel vapour.
As in the case of one-component gas in the kinetic

region considered in Section 5.1, we assumed that the evap-
oration coefficient b was equal to 1. Also, as in the case of
the one-component gas, the values of the net evaporation
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Fig. 12. The same as Fig. 11 but for Rd0 = 5 lm.
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coefficient be as functions of the droplet surface tempera-
ture were calculated directly using the rigorous kinetic
model and Eq. (24). The results are shown in Fig. 9 by
the solid curve. It can be seen from this figure that the val-
ues of be in the presence of air are noticeably smaller when
compared with the case of one-component gas in the
kinetic region. For example, in the case when Ts < 450 K
the values of be in the presence of air are less than half
of those predicted for the case when the contribution of
air in the kinetic region is ignored. At the qualitative level
this could be expected if we take into account the increased
role of collisions in the kinetic region in the presence of air.
As in the case without air in the kinetic region, the value of
be increases with increasing surface temperature.

Plots of R = Rd/Rd0 and T = Ts/Tcr versus time are
shown in Figs. 11–16 for various initial droplet radii and
gas temperatures. These were calculated using three
models:

(a) the kinetic model based on the direct numerical solu-
tion of the Boltzmann equation, described in the pre-
vious sections (rigorous kinetic model) (solid curves
1);

(b) the hydrodynamic model (dashed–dotted curves 2);
(c) the kinetic model based on the approximate solution

[17] with b = 1 (dashed curves 3).
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Fig. 11. Plots of R = Rd/Rd0 and T = Ts/Tcr versus time, as predicted by
the rigorous kinetic model (1), hydrodynamic model (2), and simplified
kinetic model with b = 1 (3). The total pressure is 3 MPa, the initial
droplet temperature is 300 K, Rd0 = 20 lm and Tg = 650 K. The contri-
bution of air in the kinetic region is taken into account.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

25 26 27 28
0.98

0.99

1.00

27.5 28.0
0.00

0.05

0.10

  (1)
  (2)
  (3)

BA

B

A
T

R

t (ms)

R, T

T

t (ms)

R

t (ms)

Fig. 13. The same as Fig. 11 but for Tg = 750 K.
All these figures show that the hydrodynamic model
always overpredicts the value of droplet surface tempera-
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ture and underpredicts the values of droplet radii and evap-
oration times, as expected (this result is compatible with
the one shown in Fig. 10 for the case of the one-component
gas in the kinetic region). The values of droplet surface
temperature and radius, predicted by the simplified kinetic
model with b = 1, always lie between those predicted by the
hydrodynamic model and the rigorous kinetic model.

Note that in some cases the difference between the pre-
dictions of the simplified and rigorous kinetic models is
negligible (e.g. see Fig. 15). In other cases, however, this
difference is noticeable and needs to be taken into account.
To quantify the accuracy of the models we introduced the
following parameter:

E ¼
sRK

evap � sM
evap

sRK
evap

� 100%; ð26Þ

where sRK
evap is the evaporation time (time during which the

droplet radius reduces from its initial value to zero) pre-
dicted by the rigorous kinetic model, sM

evap is the evapora-
tion time predicted by the model under consideration
(simplified kinetic or hydrodynamic), E is the relative error
of prediction of the model under consideration, in percent.
The results of the estimation of E for the hydrodynamic
and simplified kinetic model are shown in Table 1.

As follows from this table, the errors in predictions of
the hydrodynamic model always increase with decreasing
initial droplet radii and decreasing gas temperatures. The
maximal error of 8.3% was recorded for Rd0 = 5 lm and
Tg = 650 K. The smallest error of 0.7% was recorded for
Rd0 = 20 lm and Tg = 1000 K. The errors in prediction



Table 1
The values of E for simplified kinetic and hydrodynamic models

Rd0 (lm) 20 5 20 5 20 5
Tg (K) 650 650 750 750 1000 1000
E (simplified kinetic) 1.7% 8.0% 0.9% 4.1% 0.1% 1.5%
E (hydrodynamic) 2.0% 8.3% 1.3% 4.7% 0.7% 2.2%
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of the simplified kinetic model are always less than those
for the hydrodynamic model. As follows from our calcula-
tions, the decrease in errors, E, with increasing temperature
leads to the situation when these errors are negligibly small
for Tg > 1000 K. In the case of Rd0 = 20 lm and Tg =
2000 K the predictions of the simplified and rigorous
kinetic models almost coincide. In the case of Rd0 = 5 lm
and Tg = 2000 K the simplified model predicts the evapora-
tion time about 1.2% less than the rigorous model.

Note that some differences in the results obtained using
the simplified model presented in this paper and in [17] can
be attributed to smaller values of b and the different diffu-
sion model used in [17]. Also, the effect of curvature of the
droplets and the outer boundary of the kinetic region were
totally ignored in [17].
6. Conclusions

A new kinetic model for droplet evaporation into a high
pressure background gas (air) is described. This model is
based on the introduction of the kinetic region around
evaporating droplets, where the dynamics of molecules is
described in terms of the Boltzmann equations for vapour
and air. The boundary condition at the outer boundary of
the kinetic region is introduced by matching the mass fluxes
of vapour leaving the kinetic region and entering into the
surrounding hydrodynamic region. The collisions between
vapour molecules, air molecules, and air and vapour mole-
cules in the kinetic region are taken into account. The
numerical algorithm used for the solution of the Boltzmann
equations is essentially based on the approach suggested by
Aristov and Tcheremissine [24]. The matching condition for
molecular fluxes at the outer boundary of the kinetic region
is found based on the observation that the net mass flux of
evaporating molecules j is proportional to the difference in
the density of the saturated fuel vapour corresponding to
the droplet surface temperature and the fuel vapour density
near the outer boundary of the kinetic region.

The model and numerical algorithm described above
allow us to calculate the value of the net evaporation coef-
ficient be. This coefficient is defined as the ratio of the
actual flux leaving the outer boundary of the kinetic region
to the maximal possible flux leaving the droplet surface.
Using the values of parameters typical for diesel engines
(total pressure 3 MPa), it is shown that the values of be

increase from about 0.0001 to 0.00025 when droplet sur-
face temperature increases from about 450 K to approxi-
mately 650 K, for the case when the contribution of air
in the kinetic region is ignored. When the contribution of
air is taken into account, be increases from about 0.00005
to 0.00025 for the same range of droplet surface tempera-
tures. In contrast to the results reported in [17] based on
the simplified kinetic model, the kinetic effects predicted
by the model and numerical algorithm described above
are negligible when the contribution of air in the kinetic
region is ignored.

This effect, however, appears to be noticeable if the con-
tribution of air in the kinetic region is taken into account.
In this case, the underprediction of the droplet evaporation
time by the hydrodynamic model compared with the rigor-
ous kinetic model, described in this paper, increases when
droplets’ initial radius Rd0 and gas temperature Tg

decrease. For Rd0 = 5 lm and Tg = 650 K this underpre-
diction was more than 8%. The predictions of the droplet
evaporation time and surface temperature by the simplified
kinetic model almost always lie between those for the
hydrodynamic model and the rigorous kinetic model. The
application of the rigorous kinetic model, as described in
this paper, is recommended when accurate predictions of
the values of droplet surface temperature and evaporation
time are essential.
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